Mobiles for Development: Using upcycled electronics for transformative impact in low-income communities

Course Number: EC.751, EC.793 (G) Unite: 3-0-6 Class Size: 18 Location: N51-350 Time: 2:00-5:00 PM Wed Instructors: Heewon Lee (heewon1@mit.edu), Aditya Mehrotra (adim@mit.edu)

Course Overview:

Students explore possible uses of upcycled electronic devices in several sectors of development, including agriculture, education, health, and energy, to have a positive impact on people living in low-income communities. Guest lecturers provide insight into current trends in information and communication technology for development (ICT4D). Students work in teams to apply participatory design principles to specific projects that has been develop by community innovators in urban/rural areas of Tanzania. Optional travel to Tanzania will occur over summer 2024 with D-Lab partners in the field.

Course Objectives

Technical:

- Understanding the basics of an "Internet of Things," sharing data between devices over WiFi and cellular connections, and using smart devices to control mechatronics systems.
- Understand how to interface with analog and digital sensors to read environmental and machine data. Understand basic communication systems, data filtration, and sampling.
- Understand how to interface with and control DC motors, servos, relays, and similar ouput devices.
- Understand how to design for robustness in the field including connectivity loss, flash and EEPROM memory.
- Write and apply technical system functional requirements using basic mathematics and physics.

Non-Technical:

- Learning and practicing the participatory design process
- Gaining exposure to co-creating solutions with local innovators in the development context
- Developing skills for planning, designing, and implementing innovative projects
- Working collaboratively with local innovators to affect change

Prerequisites

None, just an open attitude toward learning and sharing.

Syllabus:

Each class will be divided into three parts. The initial segment will focus on D-Lab/Designrelated lectures, the second part will cover technical lectures, and the final segment will be dedicated to lab time.

Week	Lecture	Content	Readings	Homework
Week 1	Part 1:	-Welcome		-Students will
Feb 7	D-Lab	-Activity: Introduce yourself		meet their
	Lecture	-Overview of the Class		partners, and
		-Introductions to the		discuss
		"Design for Second Life		potential
		Innovations Project"		project
		-Syllabus Overview +		directions.
		Grading		
		-Photo & Video Release		-Lab 0:
		-Travel Survey		Introduction to
	Part 2:	-Understanding IoT in the	-Intro to	Arduino
	Technical	Context of Development	Electronics:	Programming
	Lecture	-General IoT / Use /	How to not	
		Applications	explode	
		-IoT System Architecture	everything	
		and Technical Overview		
	Part 3:	-Intro to projects		
	Lab	-Intro to local innovators		
		-Project selection		
		-Team building (working		
		style)		
		-Scheduling meetings		
		-Build timeline		
		-Identify team leader		
Week 2	Part 1:	-Participatory Design:		-Meet the
Feb 14	D-Lab	Creative Capacity Building		Partners:
	Lecture	(CCB) Methodology		Gathering
				Information &

	Part 2: Technical Lecture Part 3: Lab	Design Process 1: -Information gathering -Information synthesizing -Problem framing -Problem statement -Needs Assessment -Hardware Lab 1 (Use your phone to control your Arduino and receive data back) -Hardware Lab 1	-Example, developing system-level functional requirements	Synthesizing Information & Needs Assessment
Week 3 Feb 21	Part 1: D-Lab Lecture Part 2: Technical Lecture Part 3: Lab	Design Process 2: -Ideation -Idea selection -Sketch modeling -Functional Requirements + System-Level Architecture Design (sensors, output devices, processors, connectivity) -Ideation Lab -Sketch modeling	-Introduction to sensors, measurement, and filtration	-Meet the Partners: Ideation + Select a Project
Week 4 Feb 28	Part 1: D-Lab Lecture Part 2: Technical Lecture Part 3: Lab	Design Process 3: -Prototyping -Design requirements -Hardware Lab 2 (Sensors and Input Devices) Hardware Lab 2	-Introduction to motors, actuators, and mechatronics systems	-Prototyping: Create a user scenario -Meet the Partners: Share the lo-fi prototype / Draw a System Diagram / Feasibility Assessment for Each
Week 5	Part 1:	Design Process 4:		

March 6	D-Lab	-User feedback & User	-Begin your
Warch 0	Lecture	testing	functional
	Part 2:		
	Technical	-Hardware Lab 3 (Actuators, Output Devices)	prototypes
		output bevicesy	
	Lecture	Usedware Leb 2	
	Part 3:	-Hardware Lab 3	
	Lab		
Week 6	Part 1:	-Hardware Lab 4	-Collect user
March 13	D-Lab	(Considering Connectivity in the Field)	feedback on
	Lecture	-	your projects
	Part 2:	-Hardware Lab 4	
	Technical		
	Lecture		
	Part 3:	-Team Work Time	
	Lab		
Week 7	-In-Class Desi	gn Review	Project Work
March 20			
Week 8	Spring Break		
March 27			
Week 9	Part 1:	-Measurement and	-Project Work /
April 3	D-Lab	Documentation in the Field	Documentation
	Lecture		
	Part 2:	-Technical Documentation	
	Technical	for Hardware and Software	
	Lecture		
	Part 3:	-Documentation Work Time	
	Lab		
Week 10	Part 1:	-Field Trip Lecture	-Project Work /
April 10	D-Lab		Conduct a user
	Lecture		testing
	Part 2:	-Project Work	
	Technical		
	Lecture		
	Part 3:	-Project Work	
	Lab		
Week 11	Part 1:	-Guest Lecture:	-Project Work
THECK II	Turc I.	Guest Lecture.	TOJECC WORK

April 17	D-Lab		
Арш ту			
	Lecture		_
	Part 2:	-Project Work	
	Technical		
	Lecture		
	Part 3:	-Project Work	
	Lab		
Week 12	Part 1:	-Guest Lecture	-Project Work
April 24	D-Lab		
	Lecture		
	Part 2:	-Project Work	_
	Technical		
	Lecture		
	Part 3:	-Project Work	
	Lab		
Week 13	Part 1:	-Project Work	-Project Work
May 1	D-Lab		
	Lecture		
	Part 2:	-Project Work	_
	Technical		
	Lecture		
	Part 3:	-Project Work	
	Lab		
Week 14	Final Presenta	tions	
May 8			

Final Project:

Throughout the semester, students will engage in project work centered around the theme of "Utilizing Upcycled Electronics for Transformative Impact in Low-Income Communities."

Students will collaborate in teams and partner with local innovators in Tanzania for the duration of the semester. These teams will organize weekly video meetings through digital portals to co-create innovative ways of incorporating upcycled electronics with the existing technologies developed by our local innovators, aiming to amplify their impact.

As students will have a diverse set of skills and backgrounds represented, groups will develop challenges or mechanisms based on their interests and prerogative. In areas where teams may

have limited knowledge and experience, they can consult with the instructors, faculty, staff, and other local experts. As this is a project-based course, the instructors will provide guidance and direction with appropriate goals for a team of students to make a significant contribution to the local partners. Projects will be presented to the class and guests during the final session.

Seminars and Guest Speakers:

The instructors and guest speakers will periodically offer lectures and case studies related to humanitarian innovation design. Students should reflect on the material presented in class and investigate parallels to their own design projects.

Course Materials

Course materials are found on a shared Google Drive folder. Please do not share the materials outside the class. All technical course content will be hosted at <u>mit-d-lab.github.io</u> including labs, readings, and documentation.

Attendance and Participation

Each student's presence and involvement in class is important, as most sessions involve discussions, hands-on activities, prototyping, and user testing. Much of this work is also done in teams and would be affected by students' absence. For team projects, the level of a student's commitment and engagement might matter not only to the team but to the entire community.

Grade Distribution

- In-Class Participation: 10%
- Lab Participation: 10%
- Assignments: 30%
- Final Project: 30%
- Attendance: 20%

Grading Criteria

• F – Multiple unexcused absences. Does not complete assignments. Inappropriate behavior in class. Failure to complete the final project.

- D Consistent lateness and disengagement with course material. Shows minimal interest and applies minimal effort. Failure to complete assignments. Completes final project.
- C Occasional lateness, inconsistent effort/engagement with course material. Failure to complete assignments. Completes final project.

• B – Always present. Clearly applies effort to assignments and is engaged during class time. Difficulty with some concepts but consistently tries to learn. Completes assignments and final projects.

• A – Always present. Consistently engages with course material and effectively utilizes outof-class time to develop skills. Completes assignments and final projects.